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ABSTRACT

Tandem Diels-Alder/ cross-coupling reactions with organoindium reagents generated in situ from 1-bromo-2,3-butadiene and indium were
developed in a one-pot process. [4 + 2] Cycloaddition reactions using organoindium reagents and subsequent Pd-catalyzed cross-coupling
reactions provided the rapid synthesis of six-membered carbocycles starting from 1-bromo-2,3-butadiene.

Because main group element substituted 1,3-dienes and their
synthons play an important role as building blocks in organic
synthesis, development of efficient synthetic methods for
their preparation has been required. Although a number of
1-main group element substituted 1,3-dienes were reported,1

2-main group element substituted 1,3-dienes are rather
difficult to prepare and, therefore, rarely reported. In
particular, of these compounds, 2-(1,3-butadienyl)magnesium
chloride has been known to be a tricky species mainly due
to the poor regioselectivity involved during the course of
the reactions.2 While synthesis of 2-phenylseleno- and
2-trialkylstannyl-1,3-butadiene was reported by Bates et al.,3

1,3-butadienyl-2-yllithium was indirectly prepared from the

2-stannyl precursor.4 Preparation of 2-trialkylsilyl-1,3-buta-
diene and 2-silyl-substituted 1,3-cyclohexadienes was also
reported.5 Eisch and Hoberg reported previously about
aluminum-substituted 1,3-dienes.6 In addition, 1,3-dienyl-
2-zirconium compounds were prepared from the reaction of
2-trimethylsilyloxy-1,3-dienes with zirconocene.7 Recently,
Welker et al. reported the preparation of 2-trialkylsiloxy-
substituted and 2-KBF3-substituted 1,3-dienes from the
treatment of 2-chloro-1,3-butadiene with Mg followed by
trimethyl boronate and tri(ethoxysilyl) chloride, respectively.8
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However, synthons for 2-main group element substituted 1,3-
dienes such as homoallenyl silane,9 stannane,10 and bor-
onate11 are inconvenient to prepare. Because so much is now
known about the Diels-Alder reaction,12 we were convinced
that when we developed an efficient synthon for 2-main
group element substituted 1,3-dienes, this would prove useful
for the synthesis of six-membered carbocycles bearing a vinyl
metal moiety. Recently, we discovered that organoindium
reagents generated in situ from the reaction of indium with
1-bromo-2,3-butadiene or 1,3-dibromo-2-butyne acted as
efficient synthons for 1,3-dienyl-2-yl species in Pd-catalyzed
cross-coupling reactions13 and addition reactions to imines
and aldehydes.14 During the course of our research program
aimed at finding new indium-mediated organic reactions,15

we envisioned the possibility of extending the tandem
reaction by using an easily accessible homoallenyl indium.
Herein, we report tandem Diels-Alder/cross-coupling reac-
tions with organoindium reagents generated in situ from
1-bromo-2,3-butadiene and indium in a one-pot process,
producing cyclohexene derivatives via formation of 1-cy-
clohexenyl-1-indium (Scheme 1).

First, we examined whether organoindium reagents gener-
ated in situ from 1-bromo-2,3-butadiene and indium could
work as an efficient partner suitable for a Diels-Alder
reaction with dienophiles (Table 1). When N-methylmale-
imide 2b (0.5 mmol) was treated with organoindium reagent,
generated in situ from 1-bromo-2,3-butadiene 1 (0.75
mmol) and indium (0.5 mmol) in DMF, at 80 °C for 2 h,
tetrahydroisoindole-1,3-dione 5b was obtained in 82%
yield (entry 2). This result implies that the organoindium
reagent acted efficiently as 1,3-butadienyl-2-ylindium.
Quenching of the reaction mixture with D2O after the
initial Diels-Alder reaction gave rise to the corresponding
deuterated adduct 4 in 82% yield with 50% d-incorpora-
tion, indicating that 1-cyclohexenyl-1-indium 3 was indeed

Scheme 1. Tandem Diels-Alder Reaction/Cross-Coupling
Reaction

Table 1. Diels-Alder Reaction of Organoindium with Dienophilea

a 1 (0.75 mmol), In (0.5 mmol), and 2 (0.5 mmol) in DMF (0.25 M)
was used. b 2 equiv of 2 was used. c Cis. d 2.

Table 2. Optimization of Tandem Diels-Alder/Cross-Coupling
Reactiona

yieldb (%)

entry ligand additive solvent
time
(h) 5b 7a

1 16 PPh3 LiI DMF 2 26c 48c

2 8 Xantphos LiI DMF 3 13 43
3 8 DPEphos LiI DMF 3 6 33
4 8 DPPF LiI DMF 2 5 47
5 16 P(2-furyl)3 LiI DMF 2 11 69 (64)c

6 16 (biphenyl)Pcy2 LiI DMF 2 13 31
7 16 P(C6F5)3 LiI DMF 2 5 66 (60)c

8 16 P(p-MeO-C6H4)3 LiI DMF 3 26
9 16 P(p-CF3-C6H4)3 DMF 2 52c

10 16 P(p-CF3-C6H4)3 LiI DMF 2 70c

11 16 P(p-CF3-C6H4)3 LiId DMF 2 5
12 16 P(p-CF3-C6H4)3 LiI THF 2 65 28
13 16 P(p-CF3-C6H4)3 LiI CH3CN 3 7 56 (54)c

14e 16 P(p-CF3-C6H4)3 LiI DMF 2 8 92 (89)c

15e 16 P(p-CF3-C6H4)3 LiCl DMF 2 93c

16e 16 P(p-CF3-C6H4)3 LiBr DMF 2 84c

a 2 mol % of Pd2dba3CHCl3, 1 (1.5 equiv), 6a (1 equiv), In (1 equiv),
2b (1.5 equiv), and additive (1 equiv) were used. Stereochemistry of 7a is
cis. b GC yield based on C14H30 as an internal standard. c Isolated yield.
d LiI (2 equiv) was used. e 1 (2.3 equiv) was used.
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formed. Next, we applied these conditions to a variety of
dienophiles. N-Phenylmaleimide afforded the correspond-
ing adduct (5c) in 76% yield under the optimum reaction
conditions (entry 3). DMAD reacted with the organoin-
dium reagent in DMF at 80 °C for 3 h, producing 1,2-

bis(methoxycarbonyl)-1,4-cyclohexadiene 5a in 83% yield
(entry 1). We were particularly pleased to obtain cyclo-
hexene adducts in 83% and 84% yields, respectively, from
the reaction with maleic anhydride and ethyl acrylate
(entries 4 and 5).

Table 3. Tandem Diels-Alder/Cross-Coupling Reaction in a One-Pot Processa

a Reaction were carried out with 1 (1.1 mmol), In (0.75 mmol), and 6 (0.5 mmol) in DMF (0.25 M). b Cis. c Diastereomeric ratio. d 2 (3 equiv) was used.
e Reactions were carried out with 1 (1.5 mmol), In (1.0 mmol), In (1.0 mmol), 2 (1.0 mmol), and 6 (0.5 mmol). f Trans. g Ratio of meta- and para-isomers.
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Next, detection of cyclohexenylindium as an intermediate
led us to investigate tandem Diels-Alder/ cross-coupling
reactions using 1-bromo-2,3-butadiene and indium in a one-
pot process. These results are summarized in Table 2. After
N-methylmaleimide 2b reacted with organoindium reagents
in DMF, the reaction mixture was treated with ethyl
4-iodobenzoate in the presence of a variety of Pd catalysts
to provoke tandem Diels-Alder/cross-coupling reactions. Of
the catalytic systems examined, the best results were obtained
with 2 mol % of Pd2dba3CHCl3 and 16 mol % of (p-CF3-
C6H4)3P in the presence of 1 equiv of LiCl in DMF at 100
°C for 2 h under a nitrogen atmosphere, affording 7a
selectively in 93% yield (entry 15). When Ph3P, Xantphos,
or (biphenyl)PCy2 was used, the cross-coupling reactions did
not completely proceed (entries 1, 2, and 6). The use of (p-
MeO-C6H4)3P provided tandem reaction product in only 26%
yield (entry 8). THF gave the desired product 7a in 28%
yield together with Diels-Alder adduct 5b in 65% yield
(entry 12). Of the additives examined, LiCl (1 equiv) gave
the best results.

To demonstrate the efficiency and scope of the present
method, we applied this catalytic system to a variety of
dienophiles and electrophilic coupling partners in the tandem
Diels-Alder/cross-coupling reactions. These results are
summarized in Table 3. Although ethyl 4-chlorobenzoate did
not react with cyclohexenylindium derived from N-methyl-
maleimide, 1-bromo-2,3-butadiene, and indium under the
optimum reaction conditions (entry1), the corresponding
bromide and triflate produced the desired tandem reaction
products 7a in 76% and 72% yields, respectively (entries 2

and 4). Exposure of cyclohexenylindium to vinyl bromide
and vinyl triflate afforded 7b and 7c in 81% and 88% (dr )
1:1.3) yields, respectively (entries 5 and 6). The present
method worked equally well with diverse aryl iodides such
as 4-iodo-n-butylbenzene and 2-iodothiophene (entries 7 and
8). Cyclohexenylindium generated in situ from N-phenyl-
maleimide reacted efficiently with 2-iodobenzaldehyde and
3-iodoaniline, producing tandem Diels-Alder/cross-coupling
products (7f and 7g) possessing a 2-formylphenyl and a
3-aminophenyl group in 79% and 73% yields (entries 9 and
10). Vinylindium generated in situ from dimethyl fumarate
coupled with 2-iodoanisole, affording tandem reaction
products (7h) in 60% yield (entry 11). 3-Iodopyridine turned
out to be compatible with the present reaction conditions,
producing adduct 7i in 78% yield (entry 12). Treatment of
cyclohexenylindium generated in situ from DMAD and
maleic anhydride with 4-iodo-n-butylbenzene and ethyl
4-iodobenzoate provided 7j and 7k in 68% and 53% yields,
respectively, in a one-pot process (entries 13 and 14). We
were pleased to obtain the functionalized cyclohexene 7l in
86% yield from the reaction of ethyl acrylate with ethyl
4-iodobenzoate (entry 15).

In summary, we have developed an efficient new tandem
procedure of Diels-Alder/cross-coupling reactions with
organoindium reagents generated in situ from 1-bromo-2,3-
butadiene and indium in a one-pot process. [4 + 2]
Cycloaddition reactions of organoindium reagents with
various dienophiles and subsequent Pd-catalyzed cross-
coupling reactions provided the rapid synthesis of six-
membered carbocycles starting from aryl bromides and
iodides, vinyl bromides and triflates, 1-bromo-2,3-butadiene,
and dienophiles.
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